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ABSTRACT

The vibrational characteristics of composite (cone-cylinder)
shells are investigated analytically and experimentally. The behavior
of the circular joint connecting the conical and the cylindrical shell
components is discussed in detail. Both the analysis and the experimental
results reveal that the derivatives of the mode functions are discontinuous
at the joint, where a V-shaped minimum of normal displacement was
observed in all modes being excited. It is evident that dynamic stress
concentration is involved even in free vibrations of such shell structures.
The jump conditions are formulated for the cone-cylinder joint, and various

approaches of solving this problem are discussed.
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NOMENCLATURE

a radius of the cylindrical shell

C = Eh/(1 - VZ), extensional modulus
D = Eh3/12 (1 - v%), flexural modulus
E Young's modulus

h thickness of shell

L length of the cylindrical component

Mg, Mg, M g stress couple resultants

Ng, Ng, Ngg stress resultants

m axial mode number

n circumferential wave number

Qg, Qg transverse shearing stress resultants
Ri, Ry principal radii of curvature

T cylindrical coordinate, radial direction
s distance along meridian of shell

t time

u, v, w displacements of shell

z cylindrical coordinate, axial direction
a semivertex angle of cone

By Py angular displacement of shell normal
0 circumferential coordinate angle

K shear constant




= 1/R1 curvature
Poisson's ratio
mass density of shell
colatitude angle

natural frequency in rad/sec
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INTRODUCTION

In the existing literature on vibrations of elastic shells, abundant
information has been accumulated on the vibrational characteristics for
elementary shell configurations. Recent surveysl' 2, 3* indicate that,
with but a few exceptions, these previous investigations have been
exclusively dealing with thin shells of revolution with simple, analytical
meridian curves, of which the cylindrical, spherical, and conical shells

have received by far the most attention. Although a few investigators have

4 5, 6

developed general finite-difference™ or numerical integration techniques
which allow the calculation of the natural frequencies and mode functions of
arbitrary shells of revolution, no specific discussion, however, is available
concerning vibrations of a composite shell whose meridian contains a
geometric or material discontinuity. The present investigation is intended
to provide preliminary information of the boundary-layer effects of such
discontinuities when the composite shell is in vibration.

Contradictory to what some previous authors have expected. (e..g..,
Ref. 7), when a composite shell is vibrating at one of its resonant fre-
quencies, the mode shape in the meridional direction is not, as a rule,
given by a smooth curve. On the contrary, the derivatives of all displace-

ment functions (including the slope of normal displacement, 9w/ 0ds) may

be shown to be discontinuous across the joint. This is both an analytical

*Superscripts refer to references cited at the end of this report.




deduction from elastic shell theory, and an actual observation from the
mode -shape mapping in the present experiments on two composite (cone -
cylinder) shell models, in which a V-shaped minimum of normal displace-
ment w was observed in all normal modes being excited.

An important consequence of this boundary-layer phenomenon is
the large dynamic stresses induced in the neighborhood of the joint. The
extremely sharp curvature change observed near the joint indicates that
the shell material may suffer local plastic deformation even when the
vibration amplitude is relatively small, The vibratory nature of the local
bending stresses may easily lead to material fatigue or fracture and thus
requires special attention in the analysis and design of such composite shell

structures.



ANALYSIS

Discontinuities at Joints

Before we examine the vibrational characteristics of a specific
composite (cone-cylinder) shell, it is expedient to classify the different
types of discontinuities possible at the joints of composite shells of
revolution, and discuss their effects on stresses and deformations. Let
(r, 6, z) be the reference cylindrical coordinates, where z coincides with
the axis of symmetry of the shell, then the meridian curve of the mid-

surface may be represented by the parametric equations

r=r(s) , z=z(s) (1)

where s is the arc length measured along the meridian. The principal

radii of curvature are

R

1 (r|2 + le )3/2/(rlzll - rllzl)

(2)
R

5 = r/sin ¢

where prime denotes differentiation with respect to the argument s, and ¢

is the colatitude angle between a normal and the z-axis,

¢ =tan~! (2'/r") (3)
For a composite shell, r and z are continuous functions of s, but their

derivatives may be discontinuous at the joint s = St



Referring to the curvilinear coordinates (s, 8), a first-order shell
theory gives the following set of equadtions governing the free vibrations of

shells of revolution. These consist of five equations of motion,

I'Ns' s + NSQ, 9 + (NS - NQ)COS 4) + rQS/Rl = phru’tt

rNs@, s + NO, ) + ZNSG cos ¢ +Q9 sin ¢ = phrv’ t
rQg o +Qp, 9+ Qg cos ¢ - rNy/R) - Ng sin ¢ = phrw ¢ (4)
I'Ms, s + Mse, 6 + (MS - MG)COS ¢ - rQS = (ph3/12)rﬁs’tt

rMgg o+ Mg g+ 2Mgg cos ¢ - rQp = (ph3/12)r$39, tt

and eight constitutive equations,

Ng = C[(u.’S +w/Ryp) + (v/r)(v’e +u cos ¢ + w sin ¢)]

Ng = C[r'l(v’ g T ucos b+ w sin o) + v(u' st W/Rl)]

N_g = > C[V’S+r"l(u’9-vcos $)]

g

s = DIBg ¢+ (v/t)Bg, g + Bg cos ¢)] (5)

S
)

=Dl 1 (Bg g+ By cos ¢)+ vB, ]

1l -
2

D[Be, s t r-l (Bs, g - Bg cos $)]

1 - v

Q_ = CK[ﬁS+W

S 'u/Rl]

Qe:%CK[{’)9+ r'l(w'e-v sin dp)]
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in which subscripts following comma denote partial differentiation with

respect to the subscript variables, C = Eh/(1 - vz) is the extensional

modulus, D = Eh3/12 (1 - VZ) the flexural modulus, and other notations

are those commonly used in shell theory. From an examination of the

parameters entering into the goverhning Eqs. (4) and (5), we can classify

the possible joint discontinuities into the following categories:

I

IL

Geometric Discontinuities

(a)

(b)

(c)

Joints where R, is discontinuous. A familiar example
of this type is furnished by the joint connecting a hemi-
spherical bulkhead to a cylindrical shell.

Joints where ¢, or equivalently, R, is discontinuous.
The joint connecting a conical shell to a cylindrical
shell, as discussed below, is an example. This type
of joint has a much stronger discontinuity and, as will
be seen, may suppress local deflection like a stiffening
ring.

Joints where the thickness h has an abrupt change. If
the difference in thickness is sufficiently large, say a
ratio of ten to one, then the thinner shell may be con-
sidered clamped at the joint.

Material Discontinuities

Joints of two shell components made of different materials,
so that the elastic modulus E and Poisson's ratio v change
abruptly.

It is evident that, in an actual joint, two or more types of discon-

tinuities listed above may be present together. In any case, the conditions

that must be satisfied by the ten fundamental shell variables (eight if

classical shell theory is employed) at the joint can be put into the following

general form:




u~ cos ¢~ + w” sin ¢~ = ut cos ¢t + wt sin o7,
G sin ¢ - w~ cos &7 = ut sin ¢»+ - wh cos d,>+, (6)
vi= vt ) 5s=5; ’ ‘36:55;
Ng cos ¢ + Qg sin ¢~ = NZ cos ¢+ + Q; sin d>+,
Ng sin ¢~ - Qg cos ¢~ = N; sin d>+ - Q; cos ¢+, (7)
Nig=Nig » Mg=Mg ., Mgg=Mp

in which the superscript ''-' denotes the value at one side of the joint,

s = Sjt - 0, while '""+'* the value at the other side of the joint, s = S it + 0.

It is seen that the first five conditions, (6), ensure the compatibility of
the displacement field so that no cracks exist, and the remaining five
conditions, (7), are merely Newton's third law that action equals reaction.
If we introduce (5) into {7) and make use of (6) to cancel some equal
terms, we can in general obtain a set of "jump conditions' for each type
of discontinuity. For example, if the joint is of type I(a) and the known

discontinuity in curvature is given by

RS
Ry

Ak, = —— -

(8)
1= =7
Ry

then the conditions (6) become simply
{amvmoween epp={ut, v w8t 85} ©)

and the jump conditions obtained from (7), simplified with the help of (9),

may be shown as:



, . (10)

Av o= OBy o =0Bg ¢ =0

Therefore, the displacements u and w are continuous functions of s with

only piecewise continuous derivatives¥, while v, $4 and Be have continuous

first derivatives.

Aside from the discontinuity at the joint line, the solution of the

free vibration problem of axisymmetric composite shells may proceed

similarly to that of simple shells. For a normal-mode vibration, the

shell variables have the usual form

u, w, Bg Uns Wns Bsn

Ng, Ng, Qg =< Ngp, Ngp, Qg ¢ sin nb cos wt (11)
Mg, Mg Mg Mon

vs Bg Vn» Pén

Ngo Qg ¢ =94 Ngpgns Qon (- cOs nf coswt

Mg o Mg on

where w is a natural frequency and n an integer representing the circum-
ferential wave number; however, the mode functions with subscript n are

no longer smooth functions of s as in the case of simple shells.

*If we impose the continuity of the slope w s » the stress conditions (7)
will be violated paradoxically.




Vibrations of Composite Conic-Cylindrical Shells

The geometry of the composite shell to be considered is defined
in Figure 1. Let a denote the semivertex angle of the truncated conical
shell component, which extends from s = sytos=5,, s being measuredfrom
the vertex. At the major edge s, itis joined to a cylindrical shell with
radius a = s, sin a, and length L. The meridian is thus given by the

broken line,

IN
0]
IN

r{(s) = s sina , 1 55
(12)

IN
n
IN

r(s)=a , S, + L

52

and the colatitude angle ¢ is constant in each component,

b=¢"=7/2-a , s;<s8<s,
(13)

w2 , s,<s<s, +L

+

b=

Therefore, the joint belongs to type I(b), with the given discontinuity
Ap =6 -6 =a

The governing shell equations may be obtained by using (12) and (13) in

(4) and (5). The conditions (6) now may be written

u” sina +w” cosa=w+,

u cosa -w” sina =u', (14)
IR - . gt - _at

v =V ’BS—BS’ 69_‘59’

and, similarly, the conditions (7) become:
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- . . - ~+
Ns sin a + Qs cosa = Qg,
Ng cos a -Q; sinazN:, (15)

- Nt - gt - gt
Ns@‘ Ns@ ’ Ms - Ms ! Ms@" Ms6

To determine the jump condition of the derivatives of the displace-
ments, we introduce the corresponding constitutive equations into (15),

and simplify the result with the help of (14), to obtain

w"szw:scosa-ﬁg(l—cosa)
ZSina['+-V('+‘ia+-oa)]
——lu - (v u sin W COS
{l"‘/)K » S a 96

+ o - v - a i
u'g =u g cosa z(v’9+u sina + w~ cos a}l cos a)

1 -v
2

K(B; + W,_s) sin a

(16)

) O

— ot - _1 ) Lo .
Av,s=v’s-v’s-—a[u (1 cosa)+w’9s1na v~ sin a]

+ - v -,
ABs,s=ss,s -Bs, s =z Bgsina

8}

s N S
A69,5=69,s_69,s__5ﬁ081na

From the first two equations above, it can be seen that the jump conditions

for w and u _ are very complicated even within the scope of the first-
] s

S S

order shell theory considered. This fact makes all analytical methods
using equations in terms of displacement variables alone unsuitable for

the solution of this problem. For example, the Fourier expansion method

10
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used in Refs. 8and ! ily yield convergent results* because no
proper account can be easily taken of the jump condition (16). Also, if
finite -difference techniques are used to solve the governing differential
equations in displacements, one will find that the finite-difference equations
at the joint become extremely unwieldy due to the imposition of (16).

On the other hand, the numerical integration methods, such as

5

the computer technique developed by Kalnins”, can account for the joint
conditions, (14) and (15), with relatively simple modification. In these
methods, the first derivatives of the ten fundamental variables are directly
integrated by numerical means, and the natural frequencies are determined
by trial and error. Thus, when the numerical integration of the conical
shell equations procceds from s = s) to the joint s = s;, the conditions (14)
and (15) are imposed to obtain a set of "initial values'' of the ten fundamental
variables, then the integration process may be carried on beyond the joint,
using a consistent set of shell equations for the cylindrical shell component.
Other details of this technique will not be discussed further here, since,
beside s the modification outlined above, the readers may be referred to
Ref. 5. The degree of validity of these joint conditions, however, will be

discussed further in the next section.

Physical Significance and the Boundary-Layer Stresses

The above analysis of the joint, treated as a line of discontinuity,

provides a mathematical model of physical reality within linear elastic

*Note that the Fourier series expansion of piecewise smooth functions are
not termwise differentiable. twice.
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shell theory which is similar to other singula

H

0
c
0
=
o

such as concentrated force, line load, point source or sink, vortex street,
etc. These concepts idealize the complicated but highly localized physical
phenomenon and simplify the analytical solution of problems. To analyze

the validity of this mathematical model, we will investigate a limiting process
which has the cone-cylinder joint as its limit,

Consider that a transition zone at the joint is cut off and replaced
by a toroidal shell adapter with small radius of curvature 6R, as indicated
in Fig. 2. The width of the toroidal segment would be a - 6Rj. Note that
the center of the meridional arc must fall on the bisector of the joint angle
to allow a smooth transition., From the constitutive equations [Eq. (5)],
we find that 8R| appears at several places in the denominator of the
coefficients., Therefore, the narrow toroidal segment is enormously
stiffer than a neighboring strip in the conical or cylindrical shell due to
the smallness of 8Ry. When we take the limiting process of moving the
center of the arc toward the corner, 6R; will soon reach the same order
of magnitudes as the shell thickness h, and thus shell theory ceases to
apply. Meanwhile, several important features will be lost in the limiting
process:

(1) The much greater bending stiffness of the toroidal segment,
or the limiting ring with '""Li-cross section, '' cannot be
retained in the analysis of the limit case. In the previous
formulation of linear shell theory and joint conditions, the

bending rigidity D = Eh3/12(1 - v2) was used throughout the
composite shell.



Figure 2.

630

Transition Zone of a Cone-Cylinder Joint
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{2, Due to this large stiffness of the "joint-ring' with
L-cross section, the local lateral displacement w will be
greatly suppressed, as will be seen later in the experimental
mode shape plot. Therefore, the joint has the function of

a ring stiffener, on which large transverse shearing loads
(Qg‘n)g‘ and (Q?n)-i-, together with other loads, are exerted by
the conical and cylindrical shell, respectively. A schematic
drawing of a section of the "joint-ring'' is shown in Fig. 3.
This '"'ring-action' of the joint cannot be fully accounted for
in the limit case of linear shell equations and joint conditions,

(3) If we examine the joint-ring separately (Fig. 3), we can assert
that the loads (Q;kn)’ and (Q:fn)+ will be supported jointly by
the bending stress, Mg,, and the hoop stress, Ng,, within the
L-cross section, Therefore, the local membrane stresses are
also profoundly affected by the ''ring-action, ' although the
membrane stiffness has no apparent increase at the joint.

In short, the mathematical discontinuity or the physical ''ring-
action'' at the cone-cylinder joint creates a system of boundary-layer
stresses superposed on the stress field predicted by the linear shell theory
and joint conditions. From the qualitative analysis of the ring-action
given above, some general understanding can be obtained. A few important
boundary-layer stresses are shown qualitatively in Fig. 4.

In this connection, we conclude that even if we can solve the system
of elastic shell equations, (4) and (5), together with prescribed boundary
conditions and the joint conditions (14) and (15), with high accuracy (say,
by a modified Kalnins' numerical integration techniques), the results will
still be only an approximate solution to this problem. Although some

boundary-layer shell theories are discussed in the literature, to the author's

knowledge, they are not readily applicable to the solution of this composite
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Figure 4.

Boundary- Layer Stresses Due
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shell vibration problem, in which an interior boundary-layer phenomenon
must be analyzed.

It remains to mention that the large dynamic stresses induced near
the joint add considerable importance to the problem. The local maximum
stress near the joint may be several orders of magnitude greater than the
stresses elsewhere, and may even reach the yield stress at relatively low
amplitudes or under ordinarily safe dynamic environment. The vibratory
or reversible nature of these boundary-layer stresses makes the joint

especially vulnerable to possible material shake-down or fatigue.



EXPERIMENTAL APPARATUS AND PROCEDURE

Experiments were run on two shell models having the geometries
described :n Table 1. The experiments were similar to those described
in Ref. 9 for conical shells. The essential features of the experiments
are that the steel shells are driven by a pulsed magnetic field, and the
transverse displacement is measured by a noncontacting probe. In this
manner, neither the excitation nor the measuring system adds additional

mass or stiffness to the thin shell.

TABLE 1
Boundary
Model No. a 2 © 81 a L Condition
1 15° " 13,57V 7.0" 21. 0" Freely supported
2 5° 11, 15" 7. 0" 11.15" Clamped

The shell models were formed from 0. 010-inch thick rolled steel
shim stock. Both the conical and cylindrical components were formed
from the flat sheet with one welded seam along a meridian. This seam

was arc-welded with a butt-joint so that a negligible discontinuity was

formed in the shell. The circular joint connecting the cone and the cylinder

was similarly arc-welded and carefully ground to eliminate thickness
change,
A photograph of the experimental apparatus and instrumentation

is shown in Fig. 5. The shell models are supported from a mandrel of

18
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athe bed. The boundary support in Fig, 5 is that
used to simulate the freely supported edge condition for Model No. 1.
The right-angle groove in the circular plates supporting the upper and
lower ends is machined to a close-tolerance fit with the edge of the shell.
For Model No. 2, the edges of the shell were soldered into U-shaped
grooves in the end plates to simulate the clamped boundary condition.

Excitation to the shells was produced by a pulsed magnetic field
from four small electromagnets located at opposite ends of both a diameter
of the conical shell and a diameter of the cylindrical shell, so that both
shell components receive energy during resonance to compensate for
damping, and the excitation of a normal mode is thus optimized by
eliminating the reliance on energy transfer across the joint. The frequency
of the excitation was controlled by an oscillator driving the electromagnets
through a power amplifier. In order to optimize the excitation of each
mode, a phase control is added so that the two pairs of electromagnets at
opposite sides can be operated either in-phase or out-of-phase depending
upon the circumferential wave number n being either even or odd. The
position of the excitation along a meridian (s direction) of the shell is also
adjustable so that various axial modes may be optimally excited.

The transverse displacement w is mapped with an inductance type
displacement probe mounted on a long lead screw which can be adjusted to

a position parallel to a generator either of the cone or of the cylinder. Thus,
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the probe can traverse the she

he s direction, The entire shell and
excitation system may be rotated 360° on the central mandrel allowing a
circumferential mode shape plot also. For direct plotting of the mode
shapes, the position of the displacement probe with respect to the shell is
given by a rotary potentiometer on the mandrel and a resistance slide
wire on the lead screw assembly. The output signal from the displace-
ment detector is conditioned through a tracking filter, tuned to the excitation
frequency. The filtered output signal can be recorded on either an oscillo-
scope, frequency counter, or x-y pen recorder for mode shape plots.
Resonance is determined as the frequency at which maximum
transverse a»mplitude response is observed on the oscilloscope. The
accuracy of this method depends upon the sharpness of the amplitude-
frequency response curves which, for low damping structures such as
the shells tested, is sufficient to distinguish resonances separated by
only a few cycles per second. Frequencies are read from an electronic
frequency counter. Modes may be identified most easily by observing the
phase relationship between the driving signal from the oscillator and the
response signal from the displacement detector, both appear on the
oscilloscope screen. Upon crossing a nodal line, the phase shifts 180°
and is easily detected by the rotation of the Lissajous figure on the oscillo-
scope. Mode shapes can be plotted directly on an x-y pen recorder, with
the rectified normal displacement amplitude on the y axis, and the circum-

ferential or meridional position on the x axis.




EXPERIMENTAL RESULTS AND DISCUSSICON

r = 3o T e n M 1
Resonant rregucncles

The resonant frequencies for the two composite shell models tested
are presented graphically in Figs. 6 and 7. The measured frequency, in
cps, is plotted against the circumferential wave number n, for the axial
mode number m = 1 and 2.

For Model No. 1, the resonant frequencies are very close to the
corresponding ones of the cylindrical component alone, with the joint
considered as freely supported also. This is because the 15° cone is
much shorter and stiffer (due to the taper) than the cylindrical component,
and thus has relatively little motion during resonance compared to the
cylinder. The solid curves in Fig. 6 are the calculated frequencies of the
cylindrical component alone, considered as freely supported at both ends.
The material parameters ;1sed in these calculations are E = 30 X 106 psi,
v=20,3, and p = 7,35 X 10-%4 1b sec?/in. 4 We will discuss later the
relationship of the mode shapes in the two cases.

If we examine the constraint that the cylindrical shell component
feels at the joint, we find that there are two important changes from the
idealized freely supported edge: (1) the conditions w = 0 is now partially
released (see Fig. 8) which tends to lower the frequency; (2) the condition
NS = 0 is now partially restrained, thus there is a tendency to raise the

frequency. From Fig. 6, we see that, for n< 5, the former has stronger

22
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effects to cause an appreciable frequency decrease; forn = 5 ~ 9, the
latter overshoots slightly; while for larger n, all effects become negligible.
Similar observation can be made for m = 2.

Figure 7 shows the similar frequency plot for Model No. 2, which
has a much weaker discontinuity (5° change in ¢) at the joint. The two
shell components are of the same height (11.15'"), and therefore have
nearly the same stiffness. The two edges of the composite shell were
soldered to the end plates, as described before, to simulate the clamped
boundary; however, since the shell is extremely thin (h/a = 0. 00143) and
the soldering material was softer than rolled steel, the resulting boundary
condition is believed to lie somewhat between the clamped edge and the
simply supported edge (with meridional constraint), as indicated by the
mode shape plots (Figs. 9 and 10). For the interest of comparison, cal-
culation was made for the theoretical frequencies of a clamped (solid curve
in Fig. 7) and a simply supported (dashed curve in Fig. 7) cylindrical shell
with the same total height as the model, but without the 5° taper. The
calculation was made with a computer program utilizing the Fourier
expansion method developed in Refs. 8 and 9. It is seen that the joint
raises the frequencies as expected.

The frequency plots for both shells are characterized by having a
minimum frequency for each axial mode number m, occurring at some

value of n. This is similar to the behavior of the supported circular
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cylindrical shell, sometimes referred to as ""Arnold-Warburton effect. "
The value of n at which the minimum frequency occurs is also dependent
upon the geometric parameters of the shell, mainly the thickness ratio
h/a. For low values of n, the frequency curve turns sharply upward
because of the rapid increase of the membrane strain energy in this
region. For large n (short wavelength), the strain energy is contributed
predominantly by the bending stiffness of the shell.

We should emphasize that the high density of resonant frequencies
and the increased stiffness at the joint often results in considerable difficulty
in experimental separation of some neighboring modes and, in fact,
difficulty in excitation of a pure normal mode at nearly all the resonances
tested. It is difficult to make general statements about the frequency
spectrum for composite shells, since it is influenced by so many factors.

Mode Shapes

The most striking feature disclosed in this modal vibration experi-
ment of composite shells is probably the unexpected nonanalytical mode
shapes in meridional direction, as plottedin Figs. 8 through 10, The V-shaped
minimum of the w-s curve observed at the joint in all mode -shape mappings
is adirectevidence ofthe ''ring-action'' discussed previously, and of the
existence of a boundary-layer.

The circumferential mode shapes, however, appear to be propor-

tional to sin n6 as expected. The nodal pattern, therefore, still consisted
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of parallel circles and equispaced meridians as in simple axisymmetric
shells. It should be emphasized that, for the second axial mode, m = 2,
the middle nodal circle does not necessarily coincide with the joint. For
Model No. 1, these middle nodal circles always occurred within the
cylinder, while for Model No. 2, the exact position of the nodal circles
was extremely difficult to determine, because of the difficulty in exciting
a pure mode. But for this special shell geometry, the middle nodal circle
is probably very close to the joint,

All the mode shape mappings for m = 1 have the same general
appearance; therefore, only selected modes (for some n values) are
presented. Figure 8 shows the typical meridional mode shape for Model
No. 1. It is seen that the conical component has much less motion, and
that the cylindrical component has a mode shape of nearly half sine wave —
the mode shape for a freely supported cylinder. Therefore, for all
practical purposes, the joint, together with the cone, may be considered
roughly as a ring support in the calculation of resonant frequencies (solid
curve in Fig 6). This conclusion applies, of course, only to cases when
the conical component is relatively short and the cone angle sufficiently
large.

Figures 9 and 10 show the typical m.eridional mode shapes of Model
No. 2 for first axial modes. The transverse displacement w always has

two nearly equal peaks, one in each shell component. The magnitude of
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the displacement at the joint generally drops to less than half the peak
displacement, forming a sharp valley. "It is suspected that, for some cases
when the amplitude is sufficiently large, a segment otf ''plastic hinge'' may
be developed at each antinode of the circular joint.

We might point out that the absolute accuracy of the mode shape
mappings is rather poor. Also, the amplitude response at resonance does
not appear to have any uniform progression with frequency or the circum-
ferential mode number. These are mainly due to the previously mentioned

difficulty in exciting a pure normal mode.
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It is

[l

elt that the following conclusions may be justifiably made
from the work presented.

1. Modal vibrations of axisymmetric composite shells present
a unique problem in shell theory, with an unsolved analytical paradox
and great experimental difficulties. A satisfactory solution of this problem
hinges on a better understanding and analysis of the boundary-layer region
enclosing the joint.

2. The meridional mode shape of a composite shell always con-
tains a V-shaped minimum at the joint, with the local displacement ampli-
tude greatly suppressed by the ring action of the joint.

3. Dynamic stress concentration will undoubtedly occur at the
joint, even during free vibration of the shell., The use of a composite
shell without reinforcement is not recommended for structures in any
dynamic environment, in view of its vulnerability to crack formation.

4. The frequencies plotted against circumferential wave number
n form a smooth curve for each axial mode number, with a minimum at
some value of n, similar to the supported circular cylindrical shell.

5. The frequency spectrum is extremely dense. The transverse
displacement response to foreign excitation is likely to be complicated,

participated by a great number of modes.
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